Color Images Based Face Detection Using Skin Likelihood Model and Morphological Operations
نویسنده
چکیده
Human face detection has become a major field of interest in current research because there is no deterministic algorithm to find face(s) in a given image. Further the algorithms that exist are very much specific to the kind of images they would take as input and detect faces. The problem is to detect faces in the given, colored group photograph. This paper proposes a novel technique for detecting faces in color images using skin likely-hood model , skin Segmentation, Morphological operation and Template matching. Color images with skin color in the chromatic and pure color space YCrCb, which separates luminance and chrominance components. A Gaussian probability density is estimated from skin samples, collected from different ethnic groups, via the maximum-likelihood criterion. Adaptive thresholding for segmentation to localize the faces within the detected skin regions. Then, mathematical morphological operators are used to remove noisy regions and fill holes in the skin-color region, so we can extract candidate human face regions. Experimental results on a large photo data set have demonstrated that the proposed model is able to achieve good detection success rates of varying orientations, skin color and background environment. These system is achieve high detection accuracy, high detection speed and reduce the false detecting rate. Keywords— Face detection, Skin Segmentation, SkinColor model, Skin likelihood, Morphological operation, Temaplate Matching
منابع مشابه
The Combinational Use Of Knowledge-Based Methods and Morphological Image Processing in Color Image Face Detection
The human facial recognition is the base for all facial processing systems. In this work a basicmethod is presented for the reduction of detection time in fixed image with different color levels.The proposed method is the simplest approach in face spatial localization, since it doesn’trequire the dynamics of images and information of the color of skin in image background. Inaddition, to do face...
متن کاملFace Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملEE 368 Project: Face Detection in Color Images
We present in this report an approach to automatic detection of human faces in color images. The proposed approach consists of three parts: a human skin segmentation to identify probable regions corresponding to human faces; adaptive shape analysis to separate isolated human faces from initial segmentation results; and a view-based face detection to further identify the location of each human f...
متن کاملPixel-Based Skin Detection for Pornography Filtering
A robust skin detector is the primary need of many fields of computer vision, including face detection, gesture recognition, and pornography filtering. Less than 10 years ago, the first paper on automatic pornography filtering was published. Since then, different researchers claim different color spaces to be the best choice for skin detection in pornography filtering. Unfortunately, no com...
متن کاملMorphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal
Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012